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Abstract

We revisit the Anisotropic Kepler Problem (AKP),
which concerns with trajectories of an electron with
anisotropic mass term in a Coulomb field. This is one
of the most fundamental fields in Quantum Chaos.
Nowadays various quantum systems are challenging
us. Classical theories of these have chaos, while quan-
tum theories have developed from integrable cases and
may need to be reformulated. AKP then serves as a
suitable testing ground for quantum chaos. Here we
shed some light on the systematics of the trajectories
using ample figures from an extensive numerical anal-
ysis. In particular, the role of hyperbolic singularities
is illuminated. List of critical trajectories are given in
page 3. We comment on the validity of approximations
in an analytic formulation.

Keywords: quantum chaos, anisotropic Kepler
problem, collision trajectory, hyperbolic singularity.

1 Introduction

We revisit the AKP and shed some light on the
systematics of orbits from extensive numerical calcu-
lations. In this field the pioneering paper by Martin
Gutzwiller in 1977 is prominent [1]. By lucid analytic
consideration important features of orbits in the the-
ory are revealed. Especially it proves why there exists
an orbit which corresponds to a given Bernoulli code of
the Poincaré section. Unfortunately, however, the pa-
per has only one figure concerning orbits, namely the
vector field for the orbit. This vector field is based on
an approximation which is valid only when the point
particle is extremely near the origin (the Coulomb sin-
gularity point). However, important orbits, collision
orbits, pass nearby a hyperbolic singularity point and
there, at the very crucial point, the approximation be-
comes invalid. Therefore, one must be extremely care-
ful in deducing physical predictions from the vector
field. ([1] is collect.) We carefully check the approx-
imations adopted in various places in one hand and
on the other hand we describe the systematics of the
orbits in AKP which we have caught in an extensive
numerical study. In AKP our familiar picture for Kep-
lerian orbits must be abandoned - the first three orbits
in Fig. 1 are (a) a symmetric periodic, (b) an asymmet-
ric periodic, (c) a chaotic orbit in AKP respectively.

Nowadays various new quantum systems, electrons
in a nano size billiard [3], laser-trapped atoms [4]，
blight solitons in BE condensates [5] are challenging
us. As in Einstein’s criticism [6], present quantum
mechanics may have to be reformulated since they
have chaos in their classical regime. Feynman’s path
integral uses orbits in quantization, and comparison
with experiments are easy. A most remarkable is the
Gutzwiller’s trace formula [2], which may also offer a
key to solve the Riemann Hypothesis. Therefore the
classical orbits are important for the quantum physics.
AKP serves as a test bench of the theory – to some
extent tractable analytically and yet has a hard chaos
classically.
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Fig. 1. AKP orbits and the mechanism of Bernoulli code change.
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Fig. 2. The vector field (4) at the A approx.
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Region ϑ0 ϑ1 (U0, U1) (a0; a1)

1 0 < ϑ0 < ϑv ¡ϑh < ϑ1 < 0 (B, B) (++) a
ϑ0 ≈ ϑv Comming out into non-A via collision. a′,b′

2A ϑv < ϑ0 < π
2 π + ϑh < ϑ1 < 3

2π (B,¡B) b
ϑ0 exceeds π

2 Ã [U0 : B → 0 → ¡B] b→c→d
2A π

2 < ϑ0 < ϑ∗
c π + ϑh < ϑ1 < 3

2π (¡B,¡B) (+−) d
ϑ0 exceeds ϑ∗

c 7¡→ ϑ1 exceeds 3
2π Ã [U1 : ¡B → 0 → B] d→e→f

2B ϑ∗
c < ϑ0 < ϑ∗

h
3
2π < ϑ1 < 2π + ϑh (¡B, B) f

ϑ0 ≈ ϑ∗
h Going into the A region.

3 ϑ∗
h < ϑ0 < π π < ϑ1 < π + ϑv (¡B,¡B) (++) g

Table 1.

2 Kinematics and Orbits in AKP

The AKP Hamiltonian is

H =
u2

2¹
+

v2

2º
¡ 1

(x2 + y2)1/2
(1)

with ¹ > 1, º = 1/¹. On the Poincaré surface of sec-
tion (y = 0), H = ¡1/2 gives |x| · 2/(1+u2/¹), |u| <
∞.

By an area preserving transformation

X = x
(
1 + u2/¹

)
, U =

√
¹ arctan (u/

√
¹) , (2)

we can map it to a rectangular region |X| 6 2, |U | 6
B. Here B ≡ √

¹π/2 and this abbreviation will be
used throughout this paper. It is important to pay
attention to the trajectories around the origin in the
xy plane. We use polar coordinates for both posi-
tion and momentum; (u, v) =

√
¹eχ(cos ϑ, sinϑ) and

(x, y) = r(cos ψ, sinψ). H = e2χ/2¡1/r ≡ ¡1/2 gives

r = 2/(1 + e2χ), 0 < r < 2, ¡∞ < χ < ∞ (3)

The Hamilton equation is now

dϑ

dχ
=

√
¹ cos ϑ sinψ ¡√

º sinϑ cos ψ√
º cos ϑ cos ψ +

√
¹ sinϑ sinψ

,

dψ

dχ
=

2
1 + e−2χ

¢
√

º cos ϑ sin ψ ¡√
¹ sinϑ cos ψ√

º cos ϑ cos ψ +
√

¹ sin ϑ sinψ
,

(4)
where dχ/dt equation is used to trade t to χ. Very
close to the origin, χ → ∞, then (4) becomes au-
tonomous. Let us call this as A approximation and
the region r ≈ 0 (very large χ) as A region.

The points on the ϑψ plane where the vector field
in (4) has a zero component are called singular points.
There are two types of singularities; (a) sinϑ = sinψ =
0 (elliptic singularities), (b) cosϑ = cos ψ = 0 (hyper-
bolic singularities). In general, trajectory starting in
A remains in A in a finite time. But, if the trajec-
tory passes through the singularity, then χ may be
arbitrary small and the trajectory comes out from the
origin in the xy plane.
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Fig. 4. Type
(a0, a1)=(++),(−+),
(−−),(+−) arcs are
shown in |U0,1| ≤ B
in the 1st to the 4th
quadrant. Virial R
is maximum at four
points at the center.
Collision arcs locate
along the inner bound-
aries (e.g. a′, b′). Arcs
along the x locate
along curves in the 1st
and the 3rd quadrants
(e.g. h).

　
2.1 Classification of arcs

In the ergodicity analysis it is useful to introduce an
arc (U0, U1)(a0;a1), which start at a Poincaré section
with U0 and comes back to it with U1 and suffixes
(a0, a1) denote signs of x0 and x1 at the crossings. We
survey here which kind of an arc will follow when we
start it at various ϑ0 at a given large χ0 i.e. from A
region. (ψ0 = 0 is chosen for y0 = 0.) There are four
characteristic angles. Denoting ϑ∗ ≡ π ¡ ϑ, (i) the
arc with ϑ0 = ϑv passes through Hv, (ii) the arc with
ϑ0 = ϑ∗

s produces an arc symmetric wrt (π, π/2), (iii)
the arc with ϑ0 = ϑ∗

c reaches (3π/2, π), (iv) the arc
with ϑ0 = ϑ∗

h passes Hh
1．See Fig. 2.

Arcs starting from A region, so they stay in the A
region till the next crossing of x axis. As they are in
the A region we find

X ≈ 2 cos ψ cos2 ϑ (5)

U ≈ √
¹ sign (cos ϑ)

(
π

2
¡ 1

eχ |cos ϑ|
)

. (6)

Therefore, the arc is of type (a0, a1) = (+, §) depend-
ing whether ψ1 = 0 or π. The (U0, U1) ≈ (§B, §B),
depending on the signs of cos(ϑ0) and cos(ϑ1).

The vector field determines ϑ1 and ψ1 from ϑ0 (at
fixed χ0) in a way shown in Fig. 3 and Table 1. The
interval 0 < ϑ0 < π divides into three subintervals
ψ1 = (0, π, 0) and (R1, R2, R3). and, by (5), the

1These are named by Gutzwiller [1].
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arc is of type (++), (+¡), (++) respectively (See the
third column of Table 1). To find (U0, U1) by (6), we
must pay attention that ϑ0 = π/2 and ϑ1 = 3π/2
(that is ϑ0 = ϑ∗

c) give additional criticality. This issue
is accounted for in Fig. 3. When ϑ0 passes through
π/2, U0 changes as B → 0 → ¡B with U1 ≈ ¡B and
the arc moves rapidly on the boundary of the square
domain (for arc (+¡)) as denoted [b → c → d] in
Fig. 4. Now the map ϑ0 → (U0, U1)(a0;a1) is completed
analytically for the arcs in A region [1].

Above analysis in turn reveals the importance of
collision trajectories, which starts either with ϑ0 ≈ ϑv

or ϑ0 ≈ ϑ∗
h. Examples of these are a′ and b′ in Table 1.

Fig. 4 are organized so that a′ and b′ locate face to
face. In this organization all arcs in A locate along
the outer boundaries of the domain.

2.2 Profiles of Arcs

In Fig. 5 we visualize our arcs a to g both in xy
plane and in ϑψ plane. All are evaluated with high
accuracy and large deviation from the vector field as
seen around singular points indicate A approximation
is invalid there. Below we discuss collision trajectories
a′, b′, and another null-A arc, h.
a0 : Starting with ϑ0 = 0.998ϑv this comes close
to the hyperbolic singularity Hv(π/2, π/2) and then
turns to the left, and eventually comes back to ψ = 0
(type (+,+)). A large deviation from A approxima-
tion occurs around and after Hv. At A approxima-
tion ¡ϑh < ϑ1 < 0, but a precise calculation shows
ϑ1 < ¡ϑh. Due to the rapid χ decrease around Hv,
the orbit in the xy plane comes out from the origin. It
moves along y axis because ψ ≈ π/2, ϑ ≈ π/2 around
Hv. Initially the orbit has u0 > 0, but it turns into
u1 < 0. Therefore the arc locates in lower left corner
in the square domain |U0;1| · B for arc (++).
b0 : This starts with ϑ0 = 1.002ϑv. This makes a pair
with a′; it turnes to the right (rather than left) around
Hv and reaches ψ1 = π (arc (+¡)). This locates face
to face with a′ in Fig. 4
h : This starts in null-A region and moves around
the elliptic singularity E(π, 0). Hence it moves along
x axis.

3 Collision Trajectory

Collision trajectory is important because it intro-
duces the ergodicity in the AKP system. In terms
of symbolic dynamics a trajectory is coded by the
Bernoulli sequence (a0, a1, a2, ¢ ¢ ¢ ) and, as seen in
Fig. 1(d), the change in the code may only occur via
a collision with the origin.

Let us investigate the collision trajectory (ϑ0 =
0.999ϑv at χ0 = 7) in Fig. 6. The hyperbolic singu-
larity Hv(π/2, π/2) plays a rolê of a catapult to emitt

the particle from the origin. Since χ0 is very large,
the trajectory firstly starts very near the origin of the
xy plane (r0 ≈ 1.6 £ 10−6) with enormous momen-
tum. The particle moves rapidly on the ϑψ plane
(ticks on the trajectory indicate every factor of ten
increase of t) and it comes already within ∆ϑ ≈ 0.005
of Hv(π/2, π/2) at about t = 10−6. The particle is
now launched in the catapult. Till then χ remains
large (χ ≈ 5), and the particle is still very near to
the origin (r = 10−4). Now the second step starts

2

4

6

8

log10 t

t =10−1

π
2ψ=

t =10−6

π
2ϑ=
Hv

t =10−7

χ

−10 −8 −6 −4 −2 0

Fig. 6. Frame represents tiny white diamond around Hv in
Fig. 5.

under the influence of Hv. The trajectory developes
on ϑψ plane much slower, turning around Hv gradu-
ally with factor 105 increase of time (t from 10−6 to
10−1). Correspondingly χ decreases rapidly (from 7
to 1), and the particle is now emitted into the null A
region (r ≈ 0.1).

In conclusion we hope our results in this paper, in
particular (i) a summary of systematics of orbits, Ta-
ble 1, (ii) List of orbits in Fig. 5, (iii) orbits analysis
near a hyperbolic singularity in Fig. 6 may supplement
the article [1] and serve useful data for AKP.
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